Learning Objectives of the Module

 To introduce a systematic approach to the analysis of risk exposures in mining

 To provide practical advice for developing management programs to protect the environment and efficiently allocate resources

Background to ERM

- Increasing recognition of:
 - Environmental impacts
 - Regulatory requirements to protect the environment
- Increased adoption of:
 - Environmental impact assessment for new facilities
 - Risk-based approaches to control and manage environmental hazards

What is ERM?

- Environment
- Hazard
- Harm
- Risk
- Consequence(s)
- Likelihood

- Frequency
- Probability
- Risk analysis
- Risk assessment
- Risk management

Everyday Risks (Source ANSTO 1989)

Risk	Chances of fatality per million person years
Smoking (20 cigarettes a day)	5000
Drinking alcohol	360
Travelling by:	
motor vehicle	145
■ Train	30
Aeroplane	10
Cancers from all causes	1800
Fires and accidental burns	10
Cataclysmic storms and storm flood	0.2
Lightning strike	0.1
Meteorite	0.001

Typical Environmental Hazards in the Mining Industry

- Clearing vegetation
- Emissions to air and water
- Acid sulphate soils
- Toxic tailings
- Contaminated stormwater runoff

- Storage, transport or handling of fuels (spills, fire, explosions)
- Bushfires
- Inadequate security
- Accidents
- Soil erosion

Principles of ERM

- Uncertainty can be part of any aspect of a system
- Uncertainty can be divided into 3 categories:
 - Uncertainty of ignorance
 - Uncertainty of the unknown
 - Uncertainty of unpredictability

Principles of ERM

- ERM should have two main aims:
 - To eliminate the uncertainty of ignorance
 - To identify and manage the uncertainties of the unknown and unpredictability

ERM is Based on Best Practice Principles

- Commitment and a formalised approach
- All operations and the whole life cycle of the mine must be covered
- Sound risk analysis
- Integration of ERM with overall risk management, overall mine management and environmental management
- An ongoing process

ERM and Mining

- Mining can never have zero environmental impact
- ERM helps ensure that environmental risk is contained to acceptable levels
- A risk-based approach can be a powerful tool in ensuring cost-effectiveness of environmental management
- ERM can help meet regulatory requirements

ERM Methods and Practice

- There are a number of key elements of ERM
- Each element flows into the next and each step is limited by the quality of the work of the step that preceded it
- The process is not always linear
- Effective communication is vital throughout the process

Define the Entity to be Managed

- In an ideal world every aspect of miningrelated operations would be subject to ERM
- In reality we need to be more selective and focused
- Depending on the purpose and objectives the ERM exercise may extend across several operations or be limited to a single operation, mining phase or activity

Scoping of the Risk Analysis

- Several studies may be required for an ERM exercise
- Consider time and resource constraints and define boundaries
- Select personnel and methods
- Give personnel opportunity for input into the scope

Risk Analysis

Components

- Familiarisation and description
- Hazard Identification
- Consequence analysis
- Likelihood analysis
- Risk estimation or characterisation
- Identifying risk contributors
- Risk reduction
- Sensitivity analysis

Risk Analysis Familiarisation and Description

- All features of the mining operation and its environmental context need to be fully described
- Description and familiarisation are needed to structure the study
- Familiarisation may include a review of existing maps, reports and site inspections

Risk Analysis -Hazard Identification

- Hazards to all potentially affected aspects of the environment - including perceived hazards
- All types of hazards continual emissions, accidental releases, wastes and byproducts, and natural events
- The whole of the mine life-cycle including exploration and rehabilitation

Hazard Identification Processes

- Audit-type inspections
- Brainstorming sessions with relevant parties
- Reviews of:
 - Community concerns
 - Licence conditions including compliance and breaches
 - Incidents and previous audits
 - Operating, maintenance and emergency procedures

Risk Analysis -Consequence Analysis

- Examine each part of the event or process that contributes to the environmental outcome, as well as the end outcome itself
- For each element consider:
 - Magnitude
 - Extent
 - Severity
 - Duration

Risk Analysis -Likelihood Analysis (1)

- Likelihood analysis takes account of the likelihoods of each step in the chain of events. Factors to consider include:
 - Frequency of the initiating event;
 - Probability of safeguards failing;
 - Likelihood of an event causing a primary failure AND a safeguard failure;

Risk Analysis Likelihood analysis (2)

- The likelihood of events coinciding and causing a different outcome from one event alone;
- Likelihoods for human errors and appropriate and inappropriate responses;
- Likelihoods of certain weather conditions;
- Probablility of fatality or injury (people and other species).

Risk Analysis Risk Estimation or Risk Characterisation

- Results of consequence and likelihood analysis are combined to give:
 - Risk estimation (quantitative inputs); or
 - Risk characterisation (qualitative inputs).

Risk Analysis Identifying Risk Contributors and Opportunities for Risk Reduction

- Identify the parts of the system that make the largest contribution to risk
- This provides the opportunity to rank matters for action and to identify the opportunities for cost-effective risk management measures

Risk Analysis -Sensitivity Analysis

- The implications of changes to assumptions and limitations to knowledge should be constantly considered
- Quantitative or qualitative components

Risk Assessment

- Criteria identification
- Assessing risk against criteria
- Developing recommendations for risk management

Risk Treatment

- Accepting risk
 - Requires knowledge and understanding of the risk to allow assessment of the acceptability of the risk by the community
- Risk reduction or minimisation
 - Eliminate the hazard
 - Reduce the consequences
 - Reduce the likelihood

Management and Treatment

- Risk transfer
- Emergency/contingency planning
- Monitoring
- Auditing
- Risk management program or system

Communication and Consultation

- Risk communication is integral to ERM
 - It continues through the entire mining operation
- Communication is a two-way process
 - Listen to what stakeholders have to say
 - Provide clear and accessible information about ERM and risk analysis
 - Communication affects perception of risk

Communication and Consultation

"Effective communication is a two-way process"

 Listening to community concerns is an essential part of risk communication.

Risk = technical (actual) risk + perceived risk

Communication and Consultation

- APELL provides a tool for effective communication about risks and emergency response
- Communication involves three groups of stakeholders:
 - Company
 - Community
 - Local authorities
- The APELL approach should be integrated into the ERM process

ERM and the Mining Cycle

- Planning and concept development
- Exploration
- Approval processes
- Development and construction

- Operations
- Decommissioning, rehabilitation
- Remediating former mining sites

Risk Management and the Future

- ERM will play a bigger role in mine management in the future as environmental management standards develop.
- Why?
 - Growing environmental awareness
 - Regulation requirements
 - Growing global environmental pressures